Calculation of transverse paramagnetic relaxation en-

hancement rates

Transverse intermolecular paramagnetic relaxation enhancement (PRE) rates are calculated from the ensemble of simulation structures by averaging over the distances between the amide hydrogen atoms of EIN, IIA^{Mtl}, or IIA^{Man} and the paramagnetic Mn²⁺ ion linked to HPr via a (cysteaminyl-EDTA)-Cys adduct. To account for the flexibility of the Mn²⁺ labels, for a given structure j a single Gaussian distribution of Mn²⁺ is assumed around the center \mathbf{r}_j of a three-conformer ensemble representation for the EDTA-Mn²⁺ groups (1, 2):

$$P_{\text{Mn},j}(\mathbf{r}) = \frac{1}{(2\pi\sigma^2)^{3/2}} e^{-|\mathbf{r}-\mathbf{r}_j|^2/2\sigma^2},$$
 [1]

where σ is the width of the Gaussian distribution. Note that the three-conformer ensemble representation for the EDTA-Mn²⁺ groups was derived from the intramolecular PREs that measure the distance between the residues of HPr and the Mn²⁺ labels (1, 2). The PRE for a residue i, $\Gamma_2^{\rm calc}(i)$, is then calculated as follows;

$$\Gamma_2^{\mathrm{calc}}(i) = \frac{1}{N_{\mathrm{bound}}} \sum_{j=1}^{N_{\mathrm{bound}}} C \left\langle \frac{1}{r^6} \right\rangle_{ij},$$
 [2]

where N_{bound} is the total number of bound structures, r is the distance between the amide nitrogen of residue i and Mn^{2+} , and $\langle \cdots \rangle_{ij}$ denotes the average over the Gaussian distribution of Mn^{2+} from a structure j. The constant C is given by (2)

$$C = \frac{1}{15} \left(\frac{\mu_0}{4\pi}\right)^2 \gamma_{\rm I}^2 g^2 \mu_{\rm B}^2 s(s+1) \tau_{\rm c} \left\{ 4 + \frac{3}{1 + (w_{\rm I} \tau_{\rm c})^2} \right\},$$

$$\simeq 5.72 \times 10^9 \,\text{Å}^6/\text{s}, \qquad [3]$$

where s is the spin quantum number for an unpaired electron of $\mathrm{Mn^{2+}}$, g the electron g-factor, γ_{I} the proton gyromagnetic ratio, μ_{0} the permeability of a vacuum, μ_{B} the magnetic moment of the free electron, $w_{\mathrm{I}}/2\pi$ the Larmor frequency of the proton, and τ_{c} the correlation time.

To estimate the $\langle r^{-6} \rangle$ average of the distance r between the amide proton and the paramagnetic label, we use the Mn^{2+} distribution of Eq. 1. For a structure j and residue i, the average is then given by

$$\left\langle \frac{1}{r^6} \right\rangle_{ij} = \int \frac{1}{|\mathbf{r}_i - \mathbf{r}|^6} P_{\mathsf{Mn},j}(\mathbf{r}) d\mathbf{r}$$
$$= \frac{1}{(2\pi\sigma^2)^{3/2}} \int \frac{1}{|\mathbf{r}_i - \mathbf{r}|^6} e^{-|\mathbf{r} - \mathbf{r}_j|^2/2\sigma^2} d\mathbf{r}, \quad [4]$$

ignoring the small difference between the alpha-carbon position \mathbf{r}_i of residue i and the amide-hydrogen position. After expanding the integrand in powers of $r_{ij} \equiv |\mathbf{r}_i - \mathbf{r}_j|$ and integrating over the angle, we obtain

$$\left\langle \frac{1}{r^6} \right\rangle_{ij} = \frac{1}{r_{ij}^6} \left[1 + \frac{4\pi}{(2\pi\sigma^2)^{3/2}} \left\{ \frac{1}{r_{ij}^2} \int_0^\infty r^4 e^{-r^2/2\sigma^2} dr + \frac{1}{r_{ij}^4} \int_0^\infty r^6 e^{-r^2/2\sigma^2} dr \right\} + O\left(\frac{1}{r_{ij}^6}\right) \right].$$
 [5]

After radial integration one obtains

$$\left\langle \frac{1}{r^6} \right\rangle_{ij} = \frac{1}{r_{ij}^6} \left[1 + \frac{15\sigma^2}{r_{ij}^2} + \frac{210\sigma^4}{r_{ij}^4} + O\left(\frac{1}{r_{ij}^6}\right) \right].$$
 [6]

The width of the Gaussian distribution, σ , is taken as

$$\sigma = \begin{cases} 0 & \text{if } r_{ij} < 8\text{Å,} \\ \frac{5}{7}(r_{ij} - 8) & \text{if } 8\text{Å} \le r_{ij} < 15\text{Å,} \\ 5 & \text{if } r_{ij} \ge 15\text{Å.} \end{cases}$$
[7]

Simulation of the IIA Mtl-HPr complex

The simulation results for the IIA^{Mtl}-HPr complex are presented in Supporting Information (SI) Figs. S1 and S3. The simulated equilibrium binding affinity ($K_D \simeq 15 \mu \mathrm{M}$) is close to the experimental value ($\sim 30 \mu M$) (3). However, the DRMS values show that the majority (~ 80%) of the simulated structures exhibit large DRMS deviations ($\sim 10 \text{ Å}$). In these structures, HPr is bound to IIA^{Mtl} at the same binding interface as in the stereospecific complex but with a different relative orientation. The large population in this cluster, compared to the clusters of native-like structures with DRMS < 5 Å, may result from the neglect of detailed atomistic interactions in the coarse-grained potential energy function. In the dominant cluster, the superimposed Mn²⁺ coordinates are very close to the residues of IIAMtl so that the resulting PRE rates exhibit large amplitudes deviating significantly from the experimental values. However, removing these structures by using a larger cutoff distance of 15 Å between the center of the Mn²⁺ ions and IIA^{Mtl} residues yields qualitatively good agreement between the simulated and experimental PRE rates (see SI Fig. S3A). Further, structure-refinement via Monte Carlo energy minimization with the remaining structures ($\sim 20\%$) and reweighting the resulting clusters yields the same quality of agreement between the reweighted PREs and experimental values as for the other two complexes (EIN-HPr and IIAMan-HPr, main text). The clusters with a combined population of less than 10% account for the non-specific contributions in the PRE profile (see SI Fig. S3B). The structures of the two non-specific complexes are shown in SI Fig. S3C in blue. Note that in the encounter complexes probed by the E5C-EDTA-Mn²⁺ label, HPr is bound at the same interface of IIA^{Mtl} as in the stereospecific complex (green) with a different orientation.

References

- Tang C, Iwahara J, Clore GM (2006) Visualization of transient encounter complexes in protein-protein association. *Nature* 444:383–386.
- Iwahara J, Schwieters CD, Clore GM (2004) Ensemble approach for NMR structure refinement against H-1 paramagnetic relaxation enhancement data arising from a flexible paramagnetic group attached to a macromolecule. J Am Chem Soc 126:5879– 5896.
- Cornilescu G, Lee BR, Cornilescu CC, Wang GS, Peterkofsky A, Clore GM (2002) Solution structure of the phosphoryl transfer complex between the cytoplasmic A domain of the mannitol transporter II^{Mannitol} and HPr of the Escherichia coli phosphotransferase system. *J Biol Chem* 277:42289–42298.